lzth.net
当前位置:首页 >> sin^2X求导 >>

sin^2X求导

答案是2cos2x

y = sin(x^2) / (sinx )^2 y ' = 2x cos(x^2) / (sinx )^2 + sin(x^2) * (-sin2x)/(sinx)^3 = 【 2x cos(x^2) (sinx) + sin(x^2) * (-sin2x) 】 /(sinx)^3

sinx=(sinx)(sinx)' = 2sinx(sinx)'=2sinxcosx=sin2x(sinx)'=cosx (x)' = 2xcosx[(sinx)]' =(sinx)' = 2sinx(sinx)'=2sinxcosx=sin2x

d{ [sin(x)]^2 }/dx = 2sin(x)*cos(x) = sin(2x)

(sin2x)'=(cos2x)*2=2cos2x

3(sinx)^2*cosx [先整体求导然后对sinx求导即可]

(sin^2x)' = 2sinx * (sinx)'= 2sinx * cosx= sin(2x)cos^2(e^x) = 2 cos(e^x) * [cos(e^x) ]'= 2 cos(e^x) *[-sin(e^x)] * (e^x)'= 2 cos(e^x) *[-sin(e^x)] * e^x= - sin(2e^x) * e^x[e^(sin^2x)]' = ( sin^2x)' *

y=(sinx)^2y'=2sinx *cosx =sin(2x)

(sinx)' = 2sinx(sinx)' = 2sinxcosx = sin2x 或: (sinx)' = [(1-cos2x)/2]' = [1/2 - (cos2x)/2]' = 0 - (-sin2x)(2x)' = (sin2x)*2 = sin2x

sin2X

网站首页 | 网站地图
All rights reserved Powered by www.lzth.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com